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of Goldstino angles, which automatically gives rise to non-universal soft third sfamily and

gaugino masses. We study the fine-tuning sensitivities for dark matter and electroweak

symmetry breaking across the parameter space of the type I string model, and compare

the results to a similar analysis in the non-universal MSSM. Within the type I string

model we find that neutralino dark matter can be naturally implemented in the τ̃ bulk

region, the Z0 resonance region and the maximally tempered Bino/Wino/Higgsino region,

in agreement with the results of the non-universal MSSM analysis. We also find that in

the type I string model the “well-tempered” Bino/Wino region is less fine-tuned than in

the MSSM, whereas the τ̃ co-annihilation region exhibits a significantly higher degree of

fine-tuning than in the MSSM.
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1. Introduction

The prediction of neutralino dark matter is generally regarded as one of the successes of

the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of

parameter space allowed by WMAP and collider constraints are quite restricted. In a re-

cent paper [1] we discussed fine-tuning with respect to both dark matter and Electroweak

Symmetry Breaking (EWSB) and explored regions of MSSM parameter space with non-

universal gaugino and third family scalar masses in which neutralino dark matter may be

implemented naturally. For example, we found that the recently proposed “well tempered

neutralino” regions [2] involve substantial fine-tuning of MSSM parameters in order to sat-

isfy the dark matter constraints, although the fine tuning may be ameliorated if several

annihilation channels act simultaneously. To overcome this we proposed the “maximally

tempered neutralino” comprising substantial components of Bino, Wino and Higgsino [1],

and showed that it leads to a reduction in fine-tuning. Moreover we also found other re-

gions of parameter space which were not “well tempered” that exhibit low dark matter fine

tuning. For example the τ̃ co-annihilation region was shown to have low fine-tuning, while

the bulk region consisting of t-channel slepton exchange (achievable with non-universal

gaugino masses) was shown to involve no dark matter tuning at all corresponding to “su-

pernatural dark matter”. In all cases the usual MSSM fine tuning associated with EWSB

remained.

Though such a non-universal MSSM provides a general framework for studying natural

dark matter regions, it may not be realistic to regard the mass terms in the soft supersym-

metry (SUSY) breaking Lagrangian as fundamental inputs since the soft masses merely
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parameterise the unknown physics of SUSY breaking. In any realistic model of SUSY

breaking the soft breaking terms in the Lagrangian should be generated dynamically. It

is the parameters that define the mechanism of SUSY breaking that should be taken as

the fundamental inputs. This immediately raises a difficulty as the true origin of SUSY

breaking is unknown. In string theory the unknown SUSY breaking dynamics may be

manifested as F-term vacuum expectation values (VEVs) of hidden sector moduli fields

appearing in the theory. Therefore the values of these F-terms may be regarded as being

more fundamental input parameters than the soft mass terms of the MSSM. Although

the values of the F-terms are unknown, they may be parameterised in terms of so called

Goldstino angles which describe the relative magnitude of the F-terms associated with the

different moduli fields, as was done for example in type I string theories in [3]. A more

reliable estimate of fine-tuning sensitivity should therefore result from using such Goldstino

angles, together with the gravitino mass m3/2, and some other undetermined electroweak

parameters such as the µ parameter and the ratio of Higgs vacuum expectation values tan β

as inputs. Therefore fine-tuning should more properly be calculated with respect to these

inputs. It is possible that fine-tuning when calculated in terms of such inputs could yield

very different results.

In this paper we extend our previous analysis of the non-universal MSSM to a semi-

realistic type I string theory model of the form originally proposed in [4] and phenomeno-

logically analysed in [5] (see also [6 – 9]). Using such a string model we can address two

questions. Firstly, how does the fine-tuning of a particular dark matter region in the

non-universal MSSM [1] compare to a similar region in the string model? Secondly, do

some regions of SUSY breaking parameter space in the string model more naturally ex-

plain dark matter and electroweak symmetry breaking than others? The model we use

to address these points is the type I string inspired model in [4] in which we can obtain

SUSY breaking from any of twisted (Y) moduli, untwisted (T) moduli or the dilaton (S).

The phenomenology of SUSY breaking in this model has been studied in [5]. Neutralino

dark matter has not so far been studied in this string model, or any string model involving

twisted moduli, although it has been studied in other string models [10]–[13]. However in

none of these cases has the question of the naturalness of the predicted dark matter density

been addressed and, as discussed, one of the main motivations for the present study is to

explore how such results obtained in the non-universal MSSM translate to the case of a

“more fundamental” string theory where such non-universality arises automatically. The

main motivation for revisiting the model in [4, 5] is that it exhibits non-universal gaugino

masses and non-universality between the 3rd family and the 1st and 2nd family squarks

and sleptons, which precisely corresponds to the type of non-universality assumed in [1].

This allows a direct comparison between the non-universal MSSM and a corresponding

type I string model, since the latter shares many of the dark matter regions previously

considered. We will find that dark matter constraints close off much of the parameter

space of the type I string model, for example the benchmark points suggested in [5] are ei-

ther ruled out (ΩCDMh2 À ΩWMAP
CDM h2) or disfavoured (ΩCDMh2 ¿ ΩWMAP

CDM h2). However

we will find new successful regions of dark matter in the string model, which mirror some

of those found in the non-universal MSSM, some of which exhibit degrees of fine-tuning in
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Figure 1: The brane set-up from [4, 5].

agreement with the previous results [1], and some which vary significantly.

The layout of the remainder of this paper is, then, as follows. In section 2 we summarise

the string model of [5] and analyse the structures of the GUT scale soft masses specifically

with respect to their implications for dark matter. In section 3 we use numerical scans1

to study the fine-tuning of dark matter within such a model and find important variations

from the general results of [1]. In section 4 we present our conclusions.

2. The Model

2.1 The brane set-up

We start with the brane set-up shown in figure 1, originally proposed in [4, 5]. Here we

have two perpendicular intersecting D5 branes 51 and 52. Each holds a copy of the MSSM

gauge group. To maintain gauge coupling unification at the GUT scale we take the limit

of single brane dominance R52
À R51

. The twisted moduli Y2 is trapped at a fixed point

in the D52-brane. The untwisted moduli Ti and the dilaton propagate in the 10D bulk.

We identify the first and second family scalars with open strings with one end on the 51

brane and the other on the 52 brane. This localises them at the intersection of the branes

and effectively sequesters them from the twisted moduli. The third family scalars and the

Higgs bosons are identified with strings on the 52 brane.

In such a model the SUSY breaking can come from the twisted moduli (Y2) localised

at a fixed point in the 52 brane, the untwisted moduli (Ti) in the bulk or the dilaton (S).

Each of these forms of SUSY breaking gives rise to distinct GUT scale soft masses and so

to distinct low energy phenomena. As the exact form of their contribution to the SUSY

1As before we use SOFTSUSY v.1.9.1[35] to compute the RGE running of the soft parameters and

micrOMEGAs v.1.3.6[36] to calculate ΩCDMh2, δaµ and BR(b → sγ)

– 3 –
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Figure 2: The Goldstino angles are defined to parameterise the F-term SUSY breaking coming

from the S,T and Y moduli. (θ, φ) = (0, 0) corresponds to twisted moduli (Y2) SUSY breaking.

(θ, φ) = (0, π/2) corresponds to untwisted moduli (Ti) SUSY breaking. θ = π/2 corresponds to

dilaton (S) SUSY breaking.

breaking F-terms is not known, we use Goldstino angles [3] to parameterise the relevant

contributions of each. These angles are defined as shown in figure 2.

2.2 GUT scale soft masses

The model determines the soft masses at the GUT scale to be [4, 5]:

m2
Q̃
,m2

L̃
,m2

ũ,m2
d̃
,m2

ẽ =







m2
0 0 0

0 m2
0 0

0 0 m2
0,3






(2.1)

m2
Hu

= m2
Hd

= m2
H (2.2)

where m2
0, m2

0,3 and m2
H are defined:

m2
0 = m2

3/2

[

1 − 3

2
sin2 θ − 1

2
cos2 θ sin2 φ −

(

1 − e−(T2+T̄2)/4
)

cos2 θ cos2 φ (2.3)

−X

3
cos2 θ sin2 φ δGS

(

1 − e−(T2+T̄2)/4
)

+
X2

96
cos2 θ sin2 φ e−(T2+T̄2)/4(T2 + T̄2)

2

− 1

16
√

3
cos2 θ cos φ sin φ e−(T2+T̄2)/4

{

8(T2 + T̄2) + δGS X
}

X + O
[

δGS e−(T2+T2)/4

(T2 + T2)

]]

with X = Y2 + Y2 − δGS ln(T2 + T2) where δGS is the Green-Schwartz parameter.

m2
0,3 = m2

3/2

(

1 − cos2 θ sin2 φ
)

(2.4)

m2
H = m2

3/2

(

1 − 3 sin2 θ
)

(2.5)

The soft gaugino masses and trilinears are:

Mα =

√
3m3/2 g2

α

8π
cos θ

[

sinφ√
3

{

T2 + T̄2 +
sα

4π
δGS

}

(2.6)
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− cos φ

{

δGS

T2 + T̄2
− sα

4π

}

+ O
[

(

δGS

T2 + T2

)2
]]

A = −m3/2

(

cos θ sin φ + O
[

δGS

(T2 + T2)2

])

(2.7)

where we follow [14] in taking the parameter sα to be equal to the MSSM 1-loop β-function

coefficients: sα = βα where βα = 2π {33/5, 1,−3}. Note that all the soft masses scale as

m3/2 as expected in any SUGRA theory.

2.3 Fine-tuning and the set of input parameters

The measure we use to study the fine-tuning required to provide electroweak symmetry

breaking is [15]-[29]2 :

∆EW
a =

∂ ln
(

m2
Z

)

∂ ln (a)
(2.8)

Similarly the measure we use to study the fine-tuning of dark matter is the sensitivity

parameter [1, 30, 31]:

∆Ω
a =

∂ ln
(

ΩCDMh2
)

∂ ln (a)
(2.9)

Clearly the value of ∆Ω depends directly on our choice of inputs for a theory. In the

non-universal MSSM studied previously we took our inputs at the high energy (GUT) scale

as a = aMSSM where:

aMSSM ∈ {m0,m0,3,M1,M2,M3, A0, tan β, sign(µ)} (2.10)

Here m0 is the soft scalar mass of the first and second family of squarks and sleptons, m0,3

is the soft scalar mass of the third family of squarks and sleptons and Higgs doublets, Mi

are the three soft gaugino masses, A0 is the universal trilinear soft mass parameter, tan β

is the ratio of Higgs vacuum expectation values, and µ is the Higgsino mass parameter.

Within the present type I string model we take a = astring where:

astring ∈
{

m3/2, δGS , T2 + T 2, Y2 + Y 2, θ, φ, tan β, sign(µ)
}

(2.11)

Here tan β and sign(µ) are as in the general MSSM study as they result from the require-

ment that the model provide radiative electroweak symmetry breaking. θ and φ are the

Goldstino angles that parameterise the different contributions to SUSY breaking from the

moduli and the dilaton. The remaining parameters are directly related to the moduli. The

untwisted moduli Ti determine the radii of compactification. T2 + T 2 parameterises the

compactification radius in the 52 direction via the relation[3]:

R52
=

1

2

√

T2 + T 2 (2.12)

As the twisted moduli are trapped at the fixed point at one end of the brane and the

1st and 2nd families of scalars are trapped at the other end of the brane, the radius of

2See [1] for a discussion of the use of these sensitivity parameters to measure fine-tuning.
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Region φ M1 : M2 : M3

Twisted moduli (Y2) dominated 0 3.5 : 0.7 : −1.3

Untwisted moduli (Ti) dominated π/2 5.7 : 26 : 38

Table 1: The ratio of the GUT scale gaugino masses in the twisted moduli (Y2) and untwisted

moduli (Ti) SUSY breaking limits.

compactification, and therefore T2 +T 2, governs the degree of sequestering. This is evident

in the limits of eq. (2.3): as T2 + T 2 → ∞, m2
0 → 0.

Within this paper we follow [5] in taking T2 + T 2 = 50 and Y2 + Y 2 = 0. This

maintains the validity of the series expansion in δGS/(T2 + T 2) used to determine the F-

terms. However, as these VeVs are essentially arbitrary, we include them in our set of

parameters for determining dark matter fine-tuning.

δGS is a model dependent parameter that depends upon the details of the anomaly

cancellation in the twisted sector. This calculation is beyond the scope of this paper and

we set δGS = −10 throughout. However this value can vary and so we include it in our

calculation of fine-tuning parameters.

2.4 The structure of the neutralino

The principle factors in the determination of the dark matter relic density are the mass

and composition of the lightest neutralino. This is determined by the ratio between M1,

M2 and µ at the low energy scale. Though we cannot predict the size of µ from the form

of the soft masses, we can find M1 and M2. The values of Mi at mGUT can be simplified

from eq. (2.6) once we have set T2 + T 2 and δGS :

M1 = 0.03m3/2 cos θ (5.7 sin φ + 3.5 cos φ)

M2 = 0.03m3/2 cos θ (26 sin φ + 0.7 cos φ) (2.13)

M3 = 0.03m3/2 cos θ (38 sin φ − 1.3 cos φ)

The overall magnitude of the gaugino masses is set by m3/2 and cos θ. The ratio of GUT

scale gaugino masses is determined by φ, as shown in table 1. To analyse the low energy

gaugino mass ratio, and so study the composition of the χ̃0
1, we can use the rule of thumb3

that M1(MSUSY ) ≈ 0.4M1(mGUT ) and M2(MSUSY ) ≈ 0.8M2(mGUT ). This allows us to

see that in the twisted moduli dominated limit, in the absence of small µ, we have Wino

dark matter. In the untwisted moduli dominated limit, again without small µ, we have

Bino dark matter. To find the Wino/Bino well-tempered region we need to find the value

of φ that gives M1(mSUSY ) ≈ M2(mSUSY ). This occurs when M1(mGUT ) ≈ 2M2(mGUT )

and so the switch from Bino to Wino dark matter will occur around φ ≈ 0.05. Therefore

to study Wino/Bino “well-tempered” dark matter we should consider low values of φ. At

3The exact relation between the GUT scale and low energy masses is determined by the RGEs. We can

use this simple rule of thumb in the case of the gauginos because their one-loop RGEs are straightforward,

for their explicit form see [32]
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Point θ φ m3/2(TeV) tan β χ̃0
1 ΩCDMh2

A 0 0 5 4 Wino ΩCDMh2 ¿ ΩWMAP
CDM h2

B 0.1 0.1 2 10 Bino ΩCDMh2 À ΩWMAP
CDM h2

C 0.6 0.1 2 20 Bino ΩCDMh2 À ΩWMAP
CDM h2

Table 2: Benchmark points from [5]. B and C overclose the universe and so are ruled out by dark

matter. A lies in a region inaccessible within our studies as the parameter space has disappeared

for mt = 172.7 GeV. However even if the parameter space were allowed, the LSP would be Wino

and so could not reproduce the observed dark matter density.

lower values of φ dark matter will be Wino and so will annihilate too efficiently to explain

the observed dark matter. At larger φ, dark matter will be Bino or Bino/Higgsino.

In table 1 we have not included the dilaton dominated limit θ = π/2 for two reasons.

Firstly, as θ → π/2, Mi → 0 and the parameter space will be ruled out by LEP bounds

on the neutralinos, charginos and the gluino. As cos θ is a common coefficient, the degree

of dilaton contribution only affects the overall mass scale of the gauginos, not their com-

position. Secondly we are forbidden from accessing θ = π/2, the dilaton dominated limit,

by eq. (2.5). Within this paper we keep the squared Higgs mass positive at the GUT scale

and so limit our studies to θ < sin−1
(

1/
√

3
)

. Therefore the dilaton contribution can only

suppress the gaugino masses by a factor of 0.8 at the most. The primary effect of θ on the

phenomenology is through the sfermion and Higgs masses.

By considering the structures of the neutralino masses we can quickly analyse the

implications of dark matter for the benchmark points proposed in [5]. In table 2 we list the

soft parameters that define the three benchmark points and note the resulting composition

of the LSP. Point A corresponds to the twisted moduli dominated limit and the LSP is

Wino. Wino dark matter annihilates efficiently in the early universe resulting in a relic

density far lower than that observed today. For point A to remain valid, there would have

to be non-thermal production of SUSY dark matter or some other, non-SUSY, particle

responsible for the observed relic density4.

Points B and C both result in Bino dark matter. In general Bino dark matter does not

annihilate efficiently, often resulting in a relic density much greater than that observed. For

the density to be in agreement with the measured density, certain annihilation channels

need to be enhanced. This can happen if (i) the NLSP is close in mass to the neutralino,

allowing for coannihilation, (ii) neutralinos can annihilate to a real on-shell Higgs or Z

or (iii) there exist light sfermions that can mediate neutralino annihilation via t-channel

sfermion exchange. None of these mechanisms exist in the case of points B or C, resulting

in a predicted dark matter density far in excess of that measured by WMAP.

As the previously proposed benchmark points fail, we go on to scan the parameter

space to find points that agree with the WMAP measurement of ΩCDMh2.

4As we will show in section 3.1, this point is also ruled out by LEP bounds on the lightest Higgs if we

take mt = 172.7 GeV, as we do throughout this paper.
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Soft Mass Value

m0 3.7 × 10−6 m3/2

m0,3 m3/2

mH m3/2

M1 0.1 m3/2

M2 0.02 m3/2

M3 −0.04 m3/2

A 0

Table 3: In the twisted moduli (Y2) dominated limit, θ = φ = 0, the soft masses take the form

shown. This limit is characterised by the exponential suppression of the 1st and 2nd family scalar

soft masses and a light Wino LSP.

3. Results

3.1 Twisted moduli dominated SUSY breaking

In the twisted moduli dominated limit (θ = φ = 0) the soft masses simplify to the values

shown in table 3. In this regime the 1st and 2nd family scalars have exponentially sup-

pressed soft masses due to their sequestering from the twisted moduli. The third family

scalars and the Higgs bosons have a universal soft mass equal to m3/2. Finally the lightest

neutralino is Wino and very light.

In figures 3(a)–(d) we examine the phenomenology of the parameter space as T-moduli

contributions are gradually switched on by slowly increasing φ from 0. In the twisted moduli

dominated limit (figure 3(a)) the parameter space is either closed off by LEP bounds on the

lightest Higgs and chargino or because µ2 < 0, resulting in a failure of radiative electroweak

symmetry breaking. This disagrees with [5] because we take mt = 172.7 GeV as opposed to

mt = 178 GeV. Therefore the twisted moduli dominated limit is ruled out by experimental

bounds for the present top mass.

In figure 3(b)-(d) we take incrementally larger values of φ = 0.05, 0.07 and 0.1 respec-

tively. This has three primary effects. Firstly M2 increases, and to a lesser extent so does

M1 from eq. (2.13). This changes the LSP from Wino to Bino and quickly increases the

mass of the charginos, helping to satisfy LEP bounds. Secondly the 1st and 2nd family soft

scalar masses receive a substantial contribution from the T-moduli from eq. (2.3). Finally

M3 becomes positive and then steadily increases in size, helping to mitigate the bounds

from REWSB and from the LEP bounds on the lightest Higgs boson.

The combination of these effects opens up the parameter space as we increase φ,

where the area of parameter space consistent with collider phenomenology is shown as

white space in the figures, and within this white space the area consistent with WMAP

allowed neutralino dark matter is shown as thin coloured bands, where the colour coding

corresponds to the degree of fine-tuning as explained in the figure caption. The first

evidence of the model providing a dark matter density in agreement with that measured

by WMAP is in figures 3(c) and 3(d). In both of these scans, if µ were large the LSP

– 8 –
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Figure 3: Panel (a) shows the twisted moduli dominated limit θ = φ = 0. As we switch on

contributions from T-moduli, the LEP and REWSB bounds recede. In (b) φ = 0.05, (c) φ = 0.07

and (d) φ = 0.1. θ = 0 throughout. In panels (c) and (d) there are regions allowed by WMAP.

These regions are plotted in varying colours corresponding to the degree of fine-tuning they require.

In panel (c) we present a legend for this colour coding. Finally, we represent EW tuning by contours

in panels (b)-(d). BR(b → sγ) agrees with measurement at 1σ across the open parameter space

but (g − 2)µ agrees with the Standard Model value. The low energy SUSY spectra corresponding

to these panels are discussed in [5]

would be Bino, with a small proportion of Wino. However as much of the parameter

space is closed off because µ2 < 0, along the edge of this region µ will be of a comparable

magnitude to M1 resulting in “well-tempered” Bino/Higgsino dark matter. In such regions,

co-annihilation with χ̃0
2 and χ̃+

1 become significant and reduces the dark matter density to

the magnitude observed. However the well-tempered region visible at 4 − 8TeV is plotted

in dark blue, corresponding to a fine-tuning ∆Ω ≈ 60. This is comparable in magnitude to

that of the focus point of the CMSSM. As µ is sensitive to tan β and M1 is not, there is

no reason for these masses to be correlated as is required for Higgsino/Bino dark matter.

Therefore it is unsurprising that the tuning is large and the majority of the tuning is due

to tan β, which strongly affects the calculation of µ.

As we move to lower values of m3/2, the colour of the dark matter strip moves from

blue to red. This corresponds to a drop in ∆Ω. To understand this we need to once again

consider the composition of the LSP. Away from the region with low µ, the neutralino is

primarily Bino with a small but significant Wino component. This results in χ̃0
2 and χ̃+

1

being slightly heavier than χ̃0
1. Across much of the parameter space this mass difference

is large enough that co-annihilation effects are unimportant. However, as the overall mass

– 9 –
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scale drops, so does the absolute value of the mass difference between the LSP and the

NLSPs. Below m3/2 = 4 TeV, the mass difference is small enough for there to be an

appreciable number density of χ̃+
1 and χ̃0

2 at freeze out to co-annihilate with the LSP. The

efficiency of coannihilation is primarily sensitive to the mass difference between the LSP

and the NLSP. This mass difference scales slowly with m3/2 resulting in a Wino/Bino well-

tempered region that exhibits low fine-tuning ∆Ω ≈ 10, lower than the tuning required for

Wino/Bino regions in [1].

In figure 3(b), though there is a region of parameter space that satisfies LEP bounds

and REWSB, there is no WMAP allowed strip. This is because here the Wino component

of the LSP is already too large and dark matter annihilates too efficiently in the early

universe. This is unfortunate as it is only for low φ that we have exponentially suppressed

soft masses for the 1st and 2nd families. We would like to be able to access such a region

of parameter space as light 1st and 2nd family sleptons can provide neutralino annihilation

via t-channel slepton exchange. In [1] we found these regions exhibited very low fine-tuning.

Such a region is not available in this string model because as soon as we move away from

φ = 0 the first and second families gain substantial masses. As soon as we can access Bino

dark matter, the sleptons are already too heavy to contribute significantly to neutralino

annihilation. Though we fail to find a light slepton bulk region in this limit, in the limit

of untwisted moduli dominated SUSY breaking we will find a light τ̃ bulk region.

Finally we note that the electroweak fine-tuning is large right across this parameter

space. This is a direct result of the large values of m3/2 that are required to satisfy LEP

bounds. When φ = 0, M2 = 0.02m3/2 from eq. (2.13) and charginos are too light. As we

increase φ, the coefficient of proportionality between M2 and m3/2 increases but remains

small for small φ. To reach low m3/2 we need to move to regimes in which sin φ ≈ O(1),

away from the twisted moduli dominated limit. These large values of m3/2 are responsible

for large electroweak tuning. As m2
0,3 ≈ m2

3/2, the masses going into our calculation of

electroweak symmetry breaking are O(m3/2). We need to tune our soft masses to cancel

to provide the correct value of mZ , orders of magnitude lighter. As we increase m3/2 we

increase the degree of fine-tuning required. To access regions with low fine-tuning we need

to access low m3/2, and that means taking large φ, as we consider next.

3.2 T-moduli dominated SUSY breaking

In the limit in which all the SUSY breaking comes from the untwisted T-moduli (θ = 0,

φ = π/2), the soft masses take the form shown in table 4. In the gaugino sector, as

M1 < M2, the lightest neutralino will have no Wino component. Unless there is a part of

the parameter space with low µ, the LSP will be Bino. As Bino dark matter on its own

generally annihilates extremely inefficiently there would need to be other contributions

to the annihilation cross-section to satisfy WMAP bounds. The other defining feature of

this limit is that m0,3 = 0. As the third family particles all pick up masses through loop

corrections, they will not be massless at the low energy scale. However these corrections

are smallest for τ̃1 and will leave it light. This opens up the possibility that t-channel stau

exchange and stau co-annihilation will help to suppress the Bino dark matter density.
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Soft Mass Value

m0 131 m3/2

m0,3 0

mH m3/2

M1 0.17 m3/2

M2 0.78 m3/2

M3 1.14 m3/2

A −m3/2

Table 4: The soft masses in the untwisted moduli (Ti) dominated limit, θ = 0, φ = π/2. This limit

is characterised by vanishing 3rd family scalar masses and a Bino LSP.

As the 1st and 2nd family particles have a large soft mass, they will not provide a

contribution to the muon (g−2) value. Therefore this limit will not agree with the measured

deviation δaµ from the standard model value[34]. In this limit, the model predicts a value

of (g − 2)µ in agreement with the Standard Model.

In figures 4(a)–(d) we gradually switch on twisted moduli contributions by slowly

decreasing φ from π/2 while keeping θ = 0. This immediately gives a non-zero mass to the

3rd family squarks and sleptons. Writing φ = π/2 − δ, for small δ we can write the 3rd

family scalar mass:

m0,3 ≈ δ√
2
m3/2 (3.1)

In figure 4(a) the parameter space of tan β < 10 is entirely closed off by LEP bounds on

the stau or the stau being the LSP. As we reduce φ, we give a soft mass to the stau and so

increase its physical mass, helping to satisfy the LEP bound and push its mass above that

of the χ̃0
1. In figures 4(c),(d) the stau LEP bound is no longer important. The remaining

LEP bounds are the Higgs for low tan β and the lightest neutralino for m3/2 < 270 GeV.

Large tan β is ruled out by a failure of REWSB (µ2 < 0) and the stau being the LSP.

There are 4 distinct regions that satisfy dark matter bounds in the T-moduli dominated

limit. Alongside the region in which the stau is the LSP, there is a corresponding dark

matter strip in which the stau is close in mass to the neutralino and χ̃0
1 − τ̃ co-annihilation

reduces ΩCDMh2 to the observed value. This is visible in figures 4(b)–(d) at m3/2 >

450 GeV. For lower values of m3/2, the stau is light enough that χ̃0
1χ̃

0
1 → τ+τ− via t-

channel stau exchange is enhanced to the point that it alone can account for the observed

dark matter density. This is the stau analogue of the bulk region found in [1]. As we

reduce m3/2, we are also reducing the mass of the LSP. Before the LEP bounds close off

the parameter space there are regions in which 2mχ̃0

1

= mZ,h. These lie at m3/2 = 310 GeV

and m3/2 = 400 GeV respectively. In these regions, the lightest neutralino can annihilate

via a real on-shell Z or h0.

Each of these regions has a distinct measure of fine-tuning. The biggest surprise is

the stau co-annihilation strip, shown in grey. In contrast to the stau co-annihilation strips

studied in [1], this co-annihilation strip exhibits fine-tuning ∆Ω > 100. This is an order of
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Figure 4: Panel (a) shows the T-moduli dominated limit θ = 0, φ = π/2 in which the parameter

space is entirely closed off by experimental bounds. As soon as we move away from φ = π/2,

the parameter space opens up and we find dark matter allowed regions. In (b) φ = 15π/32, (c)

φ = 7π/16 and (d) φ = 3π/8. Once again we switch off the dilaton contributions by taking θ = 0

throughout. In panel (a) we label the different bounds that rule out the parameter space. This

colour coding holds true for all the plots. In panel (b)-(d) the WMAP allowed regions are plotted

in varying colours. The legend in panel (b) links the colour to the degree of fine-tuning. EW

fine-tuning is represented by contours in panels (c) and (d). BR(b → sγ) agrees with measurement

at 1σ across the open parameter space but (g − 2)µ agrees with the Standard Model value. The

SUSY spectra corresponding to these panels are discussed in [5].

magnitude increase over previous stau co-annihilation regions. The reason for this is the

extreme sensitivity to φ highlighted by eq. (3.1). In previous studies the soft stau mass was

so light that loop corrections from the gauginos dominated the determination of its low

energy mass. This reduced the sensitivity to variations in the soft stau mass and resulted

in the low energy stau and neutralino masses being correlated. In this model, the extreme

sensitivity of the stau soft mass to φ (for φ = 1.47, a 10% variation in φ results in a 150%

change in m0,3) breaks this correspondence. As a result, for θ = 0, the model does not

have a region in which mτ̃ and mχ̃0

1

are correlated.

We can see this by considering the effect of changing from varying the soft mass directly

to varying it via φ. Under a change of variables:

∆Ω
φ =

∑

aMSSM

φ

aMSSM

∂aMSSM

∂φ
∆Ω

aMSSM
(3.2)

When θ = 0, the coefficient of proportionality between ∆Ω
φ and ∆Ω

m0,3
is φ tan φ, so as

φ → π/2, ∆Ω → ∞. This dramatically demonstrates the model dependence of fine-tuning.
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Soft Mass Value

m2
0 −0.5 m2

3/2

m2
0,3 m2

3/2

m2
H −2 m2

3/2

Mi 0

A 0

Table 5: The soft masses in the dilaton (S) dominated limit, θ = π/2. This limit is characterised

by vanishing gaugino masses and negative Higgs (mass)2.

Eq. (3.2) is exact and a similar change of variables can be performed to find all of the

∆Ω
astring

in terms of ∆Ω
aMSSM

. In general these expressions are large and not particularly

informative. However in cases such as that of the τ̃ coannihilation region, we can use

eq. (3.2) to understand the change in the fine-tuning.

The bulk region is shown in red in figures 4(c),(d) corresponding to ∆Ω of order 10.

This tuning is entirely from φ. In [1], the tuning of the bulk region came equally from ∆Ω
M1

and ∆Ω
m0

where m0 was the soft mass of the slepton that mediated t-channel annihilation.

In [1] the total tuning of the bulk region was found to be low, ∆Ω ≈ 1. When we change

variables from aMSSM to astring, for δ ≈ 0.1, θ = 0, eq. (3.2) gives ∆Ω
φ ≈ 10∆Ω

m0,3
in the

bulk region. This explains the order of magnitude increase in the tuning.

Finally we consider the resonances. The lower edge of the Higgs resonance exhibits

a tuning ∆Ω ≈ 50 whereas the edge at larger m3/2 is so steep that the scan has failed

to resolve it. What we can see of it exhibits tuning well in excess of 100. In contrast

the Z resonance exhibits relatively low fine-tuning. This is because annihilation via an

s-channel Z is inefficient and provides only a small contribution to the total annihilation

cross-section. This is because the Z is spin 1, whereas the neutralino is a spin 1/2 Majorana

fermion. This means that in the vχ̃0

1

→ 0 limit, the annihilation cross-section via on-shell

Z production becomes negligible. As this contribution is small, it hardly affects the dark

matter fine-tuning.

The electroweak fine-tuning is shown by contours on the open parameter space. As

we noted in the previous section, electroweak fine-tuning depends closely on the largest

3rd family masses. As we can access low m3/2 for large φ, we end up with electroweak

fine-tuning O(100), similar to the lowest electroweak fine-tuning found in the MSSM.

3.3 Switching on the dilaton.

In the limit of dilaton dominated SUSY breaking, θ = π/2 the soft mass terms take the

form shown in table 5. This structure of soft masses gives rise to a plethora of problems.

Firstly, negative soft sfermion mass squareds will result in tachyons. Secondly massless

gauginos are ruled out by LEP. However the biggest problem lies in the Higgs sector. If

the soft term m2
H is negative we run the risk of breaking electroweak symmetry at the

GUT scale. This happens when m2
H + µ2 < 0 at the GUT scale. We steer clear of such
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Figure 5: Here we show the maximum dilaton contribution θ = 0.6. For larger values of θ,

m2
H1,2

< 0 at the GUT scale. The regions that satisfy dark matter constraints are plotted in

varying colours to represent the required quantity of fine-tuning. This colour coding is as per the

legend in figure 4(b). The electroweak fine-tuning is represented by contours in the open parameter

space. The BR(b → sγ) 1σ limit is plotted as a red dashed line. In panel (a) φ = 0.06, here we have

maximally tempered Bino/Wino/Higgsino dark matter, plotted in purple. In panel (b) φ = π/2,

the limit in which there is no twisted moduli (Y2) contribution. Again (g − 2)µ agrees with the

Standard Model.

regions by constraining our parameters to give m2
H > 0. This allows us to impose the limit

0 < θ < 0.6.

When we consider the maximum allowed dilaton contribution, there are two interesting

limits. For (θ = 0.6, φ = 0) we have (S, Y2) SUSY breaking. When (θ = 0.6, φ = π/2) we

have (S, Ti) SUSY breaking.

For φ = 0, dark matter is still Wino and so cannot reproduce the observed dark matter

density. The only change is that we can access large values of tan β. Therefore we cannot

have a model in which there is no T-moduli contribution to SUSY breaking and reproduce

the observed dark matter density.

In figure 5(b) φ = π/2, θ = 0.6 giving M1 < M2 and hence the LSP is Bino. By

introducing non-zero θ we increases the stau mass and avoid the LEP bounds on the stau

that ruled out θ = 0, φ = π/2. It is only for large tan β that the stau is light enough to

contribute to neutralino annihilation via t-channel τ̃ exchange. As before this region is

shown in red, corresponding to ∆Ω ≈ 10. As we can still access low m3/2, there exists a

region in which the neutralinos can annihilate via the production of a real on-shell h0 or

Z. The Z resonance shows up as a small blip in the bulk region at m3/2 = 400 GeV. The

h0 resonance appears as a highly tuned region (dark blue) in the stau bulk region around

m3/2 = 500 GeV and also at tan β = 5−10. For tan β = 10−40, even resonant annihilation

via on-shell Higgs production is not enough to suppress the dark matter density.

As we steadily decrease φ, the staus increase in mass removing the stau bulk region.

Small φ also reduces the gaugino masses, requiring ever larger values of m3/2 to satisfy

LEP bounds. There is no change in the dark matter phenomenology until φ = 0.06, when
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Dark Matter Region θ φ m3/2(TeV) Typical ∆Ω Typical ∆EW

Higgsino/Bino 0-0.6 < 0.4 1-10 60 > 3000

Wino/Bino 0-0.6 ≈ 0.06 1-3 10 300 − 3000

Bino/Wino/Higgsino 0-0.6 ≈ 0.06 2-5 10-20 1000-6000

τ̃ -co-annihilation 0-0.6 > 0.8 0.4-0.9 100 500-800

t-channel τ̃ exchange 0-0.6 > 0.8 0.25-0.45 10 100-200

h0 resonance 0-0.6 > 0.4 ≈ 0.4 > 80 200

Z0 resonance < 0.3 > 0.4 ≈ 0.3 4-20 130

Table 6: A summary of the successful regions of parameter space in the type I string model

considered here that satisfy experimental bounds on the dark matter density with corresponding

typical values of ∆Ω and ∆EW .

the neutralino acquires a large Wino component. In figure 5(a) we display this region of

parameter space. Here M1 ≈ M2 ≈ µ at the low energy scale, resulting in maximally

tempered Bino/Wino/Higgsino dark matter as proposed in [1]. This in turn gives a wide

dark matter annihilation strip shown in purple that corresponds to ∆Ω = 23. This tuning

arises from the soft mass sensitivity to φ. This dependence is understandable as it is φ

that determines the size of the Bino and Wino contributions to the lightest neutralino.

The electroweak fine-tuning is dependent upon the size of m3/2. Therefore figure 5(b)

exhibits low ∆EW in agreement with figure 4 and figure 5(a) exhibits large ∆EW as in

figure 3.

4. Conclusions

We have used the measured dark matter relic density to constrain a semi-realistic type

I string model. In the model considered supersymmetry breaking arises from F-terms

of moduli fields parameterised in terms of Goldstino angles, which automatically gives

rise to non-universal soft third sfamily and gaugino masses, which precisely corresponds

to the type of non-universality assumed in the MSSM [1]. We have studied fine-tuning

in the string model for both electroweak symmetry breaking and dark matter. We have

found that dark matter constraints close off much of the parameter space of the type

I string model, for example the benchmark points suggested in [5] are either ruled out

(ΩCDMh2 À ΩWMAP
CDM h2) or disfavoured (ΩCDMh2 ¿ ΩWMAP

CDM h2). However, by performing

a comprehensive scan over the parameter space, we found successful regions of dark matter

within the string model. Some of these mirror regions found in the non-universal MSSM

studies in [1]. When we consider fine-tuning, some regions exhibit degrees of fine-tuning

in agreement with the previous results while others vary significantly. The results are

summarised in table 6.

From table 6 it can be seen that the observed dark matter density tightly constrains the

available parameter space. For φ > 0.07, without unusual contributions to the annihilation

cross-section the model predicts an overabundance of dark matter that would over close

the universe. Equally for φ < 0.05, the LSP is Wino and the model predicts a dark
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matter abundance orders of magnitude less than that observed. By imposing dark matter

constraints we have ruled out the benchmark points proposed in [1]. Instead, we propose

a benchmark point within the region of lowest fine-tuning, the stau bulk region combined

with on-shell Z production. The SUSY spectrum of this point is presented in table 7.

In addition to constraining our models, we have been able to study how fine tuning

varies between the MSSM studied in [1] and a type I string model of SUSY breaking, which

was one of our main motivations for this study. From table 6 it can be seen that, in the

string model, the lowest dark matter fine-tuning exists in the bulk region, corresponding to

t-channel τ̃ exchange. The Z resonance, the well tempered Bino/Wino and the maximally

tempered Bino/Wino/Higgsino regions also have low dark matter fine-tuning. Of these, the

lowest electroweak fine-tuning arises in the bulk (t-channel τ̃ exchange) and Z resonance

regions. These results are consistent with the conclusions based on the previous MSSM

analysis, although the bulk region in the MSSM corresponding to first and second family

slepton exchange cannot be accessed in the string model as discussed. Thus in most cases

the degree of fine-tuning is found to be the same order of magnitude as found for similar

dark matter regions within the MSSM. However this is not always the case. Whereas the

well tempered Higgsino/Bino region in table 6 continues to be highly fine-tuned as in the

MSSM, the well tempered Bino/Wino in table 6 has a fine tuning of about 10 as compared

to the MSSM value of about 30, making this scenario more natural in the framework of

string theories such as the one considered here.

In some cases there is a sharp disagreement between the fine tuning calculated in the

MSSM and in the string model, for example in the stau co-annihilation region. Due to the

form of the SUSY breaking in this model, the stau mass, and so the dark matter density,

is very sensitive to φ which leads to an order of magnitude increase in the dark matter

fine-tuning in the string model as compared to the MSSM, making this region less natural

in the string model. This can be understood via eq. (3.2) which shows that, through

a general change of variables, the variation of the fine-tuning between a general MSSM

model and a string model can be calculated. In principle a similar change of variables

is responsible for the all the differences in fine tuning calculated in the MSSM and the

string model. In practice however, such a change of variables is not analytically tractable,

and numerical methods such as those used in the present paper are required in order to

obtain quantitative results. However the results in this paper indicate a general strategy

for reducing fine tuning within string models, namely to search for string models that

minimise the coefficients of the tuning measures. This in turn will minimise ∆Ω, providing

more natural dark matter than the MSSM for a given region of parameter space. Such a

strategy could also be employed to reduce electroweak fine tuning once the solution to the

µ problem is properly understood within the framework of string theory.

Finally we note that in this paper we have not included the effect of string loop

corrections in estimating the degree of fine-tuning, although we have included the effect

of varying δGS which parametrizes the one-loop Green-Schwartz anomaly. The magnitude

of string loop corrections is in general difficult to quantify, although there has been some

recent progress in this area [37] which indicates that at least in certain constructions the

magnitude of such corrections could be suppressed by a factor of 1/256π6. In general the
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study of such corrections, which in principle could play a role in the results presented in

this paper, is beyond the scope of the present paper.
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Point A′

θ 0

φ 3π/8

m3/2 310

tan β 13

mh0 115

mA0 550

mH0 550

mH± 556

mχ̃0

1

44.5

mχ̃0

2

213

mχ̃±

1

213

mg̃ 930

mt̃1
546

mt̃2
757

mc̃L
, mũL

3390

mc̃R
, mũR

3390

mb̃1
687

mb̃2
739

ms̃L
, md̃L

3390

ms̃R
, md̃R

3390

mτ̃1 104

mτ̃2 222

mµ̃L
, mẽL

3290

mµ̃2
, mẽ2

3280

mν̃e , mν̃µ 3290

mν̃τ 197

LSP χ̃0
1

Table 7: Sample spectra for benchmark point A′ corresponding to a point in figure 4(d) at m3/2 =

310 GeV and tanβ = 13. At this point we satisfy WMAP bounds on the dark matter density,

BR(b → sγ) and all present mass bounds. This point requires a tuning to achieve electroweak

symmetry breaking: ∆EW = 125, and a tuning to agree with WMAP: ∆Ω = 3.9. The annihilation

of neutralinos in the early universe is due to 40% χ̃0
1χ̃

0
1 → τ+τ− via t-channel τ̃ exchange and

60% χ̃0
1χ̃

0
1 → ff via the production of an on-shell Z. All masses are in GeV.
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